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Reducing premature mortality associated with age-related chronic
diseases, such as cancer and cardiovascular disease, is an urgent
priority. We report early results using genomics in combination with
advanced imaging and other clinical testing to proactively screen for
age-related chronic disease risk among adults. We enrolled active,
symptom-free adults in a study of screening for age-related chronic
diseases associated with premature mortality. In addition to personal
and family medical history and other clinical testing, we obtained
whole-genome sequencing (WGS), noncontrast whole-bodyMRI, dual-
energy X-ray absorptiometry (DXA), global metabolomics, a new
blood test for prediabetes (Quantose IR), echocardiography (ECHO),
ECG, and cardiac rhythm monitoring to identify age-related chronic
disease risks. Precision medicine screening using WGS and advanced
imaging along with other testing among active, symptom-free adults
identified a broad set of complementary age-related chronic disease
risks associated with premature mortality and strengthened WGS
variant interpretation. This and other similarly designed screening
approaches anchored by WGS and advanced imaging may have the
potential to extend healthy life among active adults through im-
proved prevention and early detection of age-related chronic diseases
(and their risk factors) associated with premature mortality.

precision medicine | screening | genomics | genome |
magnetic resonance imaging

The near-doubling of average human life expectancy over the
last 150 y is a tribute to scientific advancements in medicine

and public health (1). This success is largely the result of progress
in control and prevention of infectious diseases, particularly in
prevention of early childhood deaths. Eighty-five percent of
children born now in the United States can expect to live to at
least 65 y of age, and 42% will likely celebrate an 85th birthday
(1). Partly because of this progress, the United States and many
other parts of the world are facing a daunting and costly new and
growing epidemic of age-related chronic diseases (1, 2).
Most age-related chronic diseases have substantial heritability

(3, 4), often are slowly progressive with symptom-free onset (5),
and are associated with common risk factors (2, 6). In 2015, the
estimated US cumulative mortality risk among males 50–74 y of
age was 39%; for women, the risk was lower but still substantial
at 24% (6, 7). The causes of these deaths are similar across men
and women, with neoplasms and cardiovascular disease account-
ing for about one-third each. Diabetes and related conditions, re-
spiratory diseases, cirrhosis and other liver diseases, and neurologic
disorders account for most of the remaining one-third.
Few published examples show how genomics (8, 9) might be

proactively incorporated into new models for medical practice
and what infrastructure will be needed to support data generation

and use (10–16). We used medical and family history and routine
clinical testing in addition to clinical-grade whole-genome se-
quencing (WGS) (9), noncontrast whole-body magnetic resonance
imaging (MRI) (17–19), dual-energy X-ray absorptiometry
(DXA), global metabolomics (12, 20, 21) and a new blood test
for prediabetes (Quantose IR) (22), echocardiography (ECHO),
and ECG and 2-wk cardiac rhythm monitoring in an effort to
identify age-related chronic disease risks associated with pre-
mature death (Fig. 1). Our objective for precision medicine
screening of active, symptom-free adults was, in some ways, like
successful newborn screening programs using advanced MS
technologies for early simultaneous detection of multiple life-
threatening conditions (23, 24). Age-related chronic diseases
associated with premature mortality are much more common
among active adults than diseases targeted in newborn screening,
which make them good candidates for screening, but they re-
quire a broader set of specialized tools and technologies for
identification of disease risk than any single modality, such as
WGS. We evaluated whether active integration of routine and
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advanced clinical data with WGS has the potential to improve
disease risk detection and strengthen WGS variant interpreta-
tion in support of precision medicine and discovery.

Results
We enrolled 209 study participants with median age of 55 y old
(range 20–98 y old, 34.5% female) between September 10, 2015
and May 16, 2016. There were 2 study participants 20–24 y old, 3
participants 25–29 y old, 8 participants 30–34 y old, 15 partici-
pants 35–39 y old, 19 participants 40–44 y old, 27 participants
45–49 y old, 31 participants 50–54 y old, 40 participants 55–59 y
old, 28 participants 60–64 y old, 21 participants 65–69 y old, 10
participants 70–75 y old, 2 participants 75–79 y old, 1 participant
80–84 y old, 1 participant 85–89 y old, 0 participants 90–94 y old,
and 1 participant 95–100 y old. Selected characteristics comparing
study participants with an age- and sex-adjusted National Health
and Nutrition Survey (NHANES) cohort, a US population-based
sample, are shown in Table 1. Routine clinical laboratory testing
was obtained on 90 study participants (43%); noncontrast whole-
body MRI, DXA, and ECHO were conducted on all study partici-
pants. A specific MRI protocol to obtain body compartment-specific
fat and muscle estimation was conducted on 126 participants
(60%) (19). Global metabolomics and a new blood test for pre-
diabetes (Quantose IR), including fasting blood glucose and other
metabolites, were obtained on 208 participants (12, 20–22). ECG
was performed on 202 study participants. Some portion of the
intended 2-wk cardiac rhythm monitoring was completed on 140
(67%) participants; the median duration of monitoring was 5.9 d
(range 0.8–14 d). Study participants who had the cardiac rhythm
monitoring kit applied during their study visit had better use and
duration of monitoring than those who applied the cardiac rhythm
monitoring device at home. Abnormal findings for routine clinical
laboratories, whole-body MRI, DXA, ECHO, ECG, and 2-wk
cardiac rhythm monitoring are selectively summarized for par-
ticipants with likely clinical correlations with genomic findings
(Table 2 and Table S2), previously unrecognized age-related
chronic disease risk requiring prompt (<30 d) medical atten-
tion (Table S3), and to apply case definitions for five diseases or
conditions, including type 2 diabetes mellitus (diabetes) and di-
abetes risk, atherosclerosis or atherosclerosis risk, metabolic
syndrome, nonalcoholic fatty liver disease (NAFLD), and non-
alcoholic steatohepatitis (NASH) (Fig. 2). Seventy (34%) study
participants were referred for follow-up imaging based on find-
ings from noncontrast whole-body MRI.
WGS was obtained on all 209 study participants. The median

numbers of variants identified by predicted ethnicity were 3.60 mil-
lion for European (n = 159, 76%), 3.65 million for admixture (n =
32, 15%), 3.59 million for east Asian (n = 10, 5%), 3.66 million for
south central Asian (n = 4, 2%), 4.36 million for African (n = 2, 1%),
and 3.75 million for Middle Eastern (n = 2, 1%). Twenty-one (10%)
of the 209 participants were from seven families. WGS revealed
27,482,829 unique variants [21,761,709 single-nucleotide variants
(SNVs) and 5,721,120 insertion–deletions (indels)]. Of these,
1,953,187 (1,769,795 SNVs and 183,392 indels) were observed only
once in the our database; many of these occurred in 5′ and 3′UTRs,
which contain the largest enrichment of genome-wide association
studies (GWAS)-implied disease associations (25) (Table S1).
Rare monogenic variant findings were identified with stan-

dardized and phenotype-based queries using an internal version
of Human Longevity, Inc. (HLI) Open Search (9) and the
American College of Medical Genetics (ACMG) criteria for
interpretation (26, 27). A total of 310 unique medically signifi-
cant risk alleles in 231 genes were identified, a median of 2 per
study participant (range, 0–7); 25 study participants had none. Of
these, we classified the inheritance of 261 alleles in 190 genes as
autosomal recessive (AR), we classified the inheritance of 38 alleles
in 33 genes as autosomal dominant (AD), we classified the in-
heritance of 14 alleles in 9 genes as AR/AD, and we classified the
inheritance of one allele as X-linked dominant. The most com-
monly affected genes (number of variants) were BTD (six), HFE
(two), SERPINA1 (three), ABCA4 (five), and GJB2 (three) for AR;

F5 (one), F2 (one), ALDH2 (one), NBN (two), and PPP1R3A (two)
for AD; and CFTR (four), SPINK1 (one), VWF (three), ALPL
(two), and F11 (one) for AR/AD. Table 3 shows the distribution of
these AD, AD/AR, and homozygous AR genes and related variants
classified as pathogenic and likely pathogenic by major age-related
chronic disease using Global Burden Disease groupings with the
number of study participants impacted (6, 7). There were 9 genes
and 10 alleles with neoplasm-associated risk, 4 genes and 4 alleles
with cardiovascular-associated risk, 6 genes and 8 alleles with
diabetes-associated risk, 1 gene and 1 allele with cirrhosis-associated
risk, and 6 cases with the homozygous APOE 4 c.388T > C allele.
Using our full range of screening tests, we identified clinical

correlations with genomic findings among 43 (21%, 1:5) study
participants. A summary of sources for clinical correlation with ge-
nomic findings by age-related chronic disease group is shown in Table
2. Detailed data describing clinical correlations by specific gene,
variant, mode of inheritance, and zygosity are provided in Table S2.
Through exploration of rare monogenic variants and associ-

ated global metabolomic results, we identified 10 unique alleles
in 14 study participants with metabolic signatures consistent with
penetrance (Table S2). Metabolic pathways impacted by the allelic
differences included fatty acid beta oxidation, fatty acid synthesis,
urea cycle, and signatures associated with oxidative stress. Strong
metabolic signatures were observed for two polymorphisms matching
the genes’ function. Two heterozygous variants in the ACADS gene,
c.1510G > A and c.1030C > T, coding for the short-chain acyl-CoA
dehydrogenase (SCAD) were detected in one case. In another
case, the heterozygous ACADM variant c.1456C > T coding for
medium-chain acyl-CoA dehydrogenase (MCAD) was detected,
and interestingly, both enzymes participate in fatty acid beta oxi-
dation by reducing different fatty acid chain length (28). SCAD
specifically acts on the short-chain fatty acid butyryl-CoA, and
MCAD reduces acyl-CoA chains containing 6–12 carbons. In
the absence of SCAD activity, by-products of butyryl-CoA, includ-
ing butyrylcarnitine and ethylmalonate, accumulate (29). Greatly

Fig. 1. Study process for precision medicine screening including WGS and
advanced imaging as reported. Comprehensive return of results available
within 10–12 wk of study visit.
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elevated levels of butyrylcarnitine and ethylmalonate (Z scores
above the 97.5th percentile) were observed in the plasma, sug-
gestive of combined metabolic penetrance of these variants.
Moreover, greatly elevated medium-chain acylcarnitines (hex-

anoylcarnitine, octanoylcarnitine, and decanoylcarnitine; Z scores
above 97.5 the percentile) were detected, suggestive of reduced
MCAD activity. Large GWAS combined with metabolic pro-
filing have previously identified associations between ACADS
and MCAD and their respective metabolic substrates, lending
support to the metabolic penetrance observed on an individual
basis in this study (30–32). We previously reported on additional
metabolomic/genetic variants, which are heterozygotes for known
recessively inherited disorder (12, 20). These studies established
that “carrier” disease state does not reflect carrier for individual
metabolic variation. The number of adult cases of metabolic pene-
trance will continue to expand using this approach.
Metabolomic analysis also detected xanthinuria in an indi-

vidual with early-onset (20s) recurrent renal stones (six episodes)
as well as the drug effect of xanthine oxidase inhibitors in three
other individuals.
Although hypoxanthine and especially, xanthine levels were

elevated in both cases, normal urate and elevated orotate and
orotidine levels, due to perturbed pyrimidine synthesis (33), were
only observed in individuals taking xanthine oxidase inhibitors
(allopurinols) for their gout conditions.

We identified 164 (78%, >3:4) participants with evidence of
age-related chronic disease or risk factors. One hundred eigh-
teen study participants (56%) had evidence of diabetes or risk
for diabetes: 15 (7%) had type 2 diabetes, 80 (38%) had pre-
diabetes, and 23 (11%) had insulin resistance suggesting pre-
diabetes risk (based on Quantose IR). Only 19 (9%) reported a
history of type 2 diabetes or prediabetes. One hundred twenty-
four participants (59%) had evidence of atherosclerotic disease
or risk. Thirty-three (16%) had evidence of metabolic syndrome.
Twenty-eight participants (13%) met a screening definition for
NAFLD, and one had suspected NASH. Many participants had
multiple overlapping conditions, including 29 with prediabetes
and atherosclerotic disease or risk; 19 with prediabetes, athero-
sclerotic disease or risk, and metabolic syndrome; and 13 with
insulin resistance and atherosclerotic disease or risk. When diabetes,
prediabetes, and insulin resistance were considered as a group of
diseases and conditions, 28 (11%) had all four of the common
diseases and conditions (diabetes and diabetes risk, atheroscle-
rosis or atherosclerosis risk, metabolic syndrome, and NAFLD).
As expected, there was a strong effect of age on the prevalence of
these conditions, with exception of NAFLD (Fig. 2).
We identified 17 study participants (8%) with previously un-

recognized age-related chronic disease risk requiring prompt
(<30 d) medical attention after confirmation of screening findings.
This includes 4 with early-stage neoplasias (thymoma, renal cell

Table 1. Study participant characteristics and comparison with the NHANES

Variables Study participant NHANES adult
Standardized incidence

ratio (55) 95% CI P value

Characteristics
Age, y 4.43E-40*

Median 55 26
Range 20–98 0–80

Sex 4.84E-04*
Male 65.6% 49.2%
Female 34.4% 50.8%

Measured BMI
Median (25–75%) 26 (23–29) 24.7 (20–30)

Measured systolic blood pressure
Median (25–75%) 123.5 (115–133) 116 (106–128)

Measured LDL
Median (25–75%) 114.5 (96–135) 103 (81–127)

Diseases
Neoplasms

Ever told you had cancer or malignancy 15.1% 9.5% 1.5 1.02–2.16 3.39E-02*
Cardiovascular

Ever told you had coronary heart disease 4.1% 4.0% 0.9 0.38–1.74 7.98E-01
Chronic respiratory diseases

Ever told you had COPD 1.0% 3.3% 0.2 0.02–0.88 9.52E-02
Diabetes, urogenital, blood, and endocrine diseases

Doctor told you have diabetes 4.6% 7.5% 0.3 0.13–0.54 9.63E-04*
Cirrhosis and other chronic liver diseases

Ever told you had any liver condition 6.1% 4.1% 1.1 0.55–1.89 7.75E-01
Neurological disorders

Blood relatives have Alzheimer’s disease 13.2% 13.3% 1.0 0.63–1.44 1.00E+00
Risk factors

Alcohol use
Had at least 12 alcoholic drinks per 1 y 90.0% 70.0% 1.2 0.99–1.37 2.76E-02*

Tobacco smoking
Smoked at least 100 cigarettes in life 38.4% 42.2% 0.8 0.58–0.97 8.90E-02

High LDL cholesterol
Now taking prescribed medicine 78.9% 85.4% 1.1 0.74–1.48 6.02E-01

High blood pressure
Ever told you had high blood pressure 23.0% 33.7% 0.5 0.38–0.69 6.81E-06*
Taking prescription for hypertension 73.8% 83.6% 0.8 0.54–1.14 2.44E-01

The NHANES information is at https://www.cdc.gov/nchs/nhanes/. BMI, body mass index; COPD, chronic obstructive pulmonary disease.
*P ≤ 0.05.
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carcinoma, and two high-grade prostate neoplasms all initially
suspected on MRI and confirmed through biopsy), 1 with enlarged
aortic root, 2 with newly recognized atrial fibrillation cases, 2 with
medically significant arrhythmias, 1 with third degree heart block,
1 with primary biliary cholangitis, and 1 with xanthinuria (Table S3).

Discussion
We used a precision medicine screening approach anchored by
WGS and noncontrast whole-bodyMRI along with other screening
tests among active, symptom-free adults to identify age-related
chronic disease risks associated with premature mortality. We hy-
pothesized that, by doing this, we may accelerate identification of
age-related chronic disease risk, allowing for a range of earlier
interventions and potentially, better health outcomes. We found
that WGS alone identified possible age-related chronic disease
risks associated with premature mortality (19% of participants),
including neoplasms (8%), cardiovascular diseases (2%), diabetes
and related diseases (6%), cirrhosis and other chronic liver disease
(<1%), and neurologic disorders (3%). Combining WGS with
advanced imaging and other testing strengthened guideline-
driven WGS variant interpretation (26, 27). As shown in Table 2,
a broad range of our imaging and other screening testing was
useful in strengthening WGS variant interpretation, and many of
our study participants had multiple lines of supporting clinical
evidence (Table S2).
Additionally, we could correlate alterations in global metab-

olomics levels (a phenotype) with 15 heterozygous AR alleles.
This is a relatively unexplored realm of human biology and clinical
application, particularly among adults, but our data suggest that
this may be a relatively common phenomenon (12, 20). In total, we
could identify likely clinical (or phenotypic) correlations in one-
fifth of our study participants. This is an encouraging baseline
for clinical utility given that we could characterize only a min-
iscule fraction of the total WGS variation that we identified
in this cohort.
We looked at two other risk perspectives in our study to more

fully characterize the likely potential of this screening approach
to identify age-related chronic disease risks associated with
premature mortality.
Identifying risk includes not only prevention opportunities but

also early detection of these diseases and risks associated with
these diseases. We used case definitions to identify four common
diseases or conditions that are age-related chronic diseases as-
sociated with premature mortality (diabetes and diabetes risk) or
are risk factors for these diseases (atherosclerosis for cardio-
vascular diseases, metabolic syndrome for diabetes and cardio-
vascular diseases, and NAFLD for cirrhosis) (Fig. 1) (34–36).
More than three-quarters of our study participants had at least
one of these diseases or conditions, and 28 (11%) had all four of
these diseases or conditions. The overall prevalence of these diseases
or conditions increased with age, except for NAFLD, which was
relatively constant by age, although the cohort is relatively small.
The other risk perspective that we highlight for early detection is
that 17 (8%) participants who we identified as having previously un-
recognized age-related chronic disease risk required prompt (<30 d)

medical attention, including 4 (2%) with early-stage neoplasms.
Surprisingly given our overall data, we did not identify high-risk rare
monogenic variants in any of these individuals; this emphasizes
the important of advanced imaging and our other clinical tests as
a complement WGS for screening. Overall, WGS was useful in ex-
plaining past medical history and possible future individual (and
familial) disease risk for prevention, while advanced imaging and
other testing were most useful for (early) detection of active disease.
There is warranted concern about testing performance whenever

screening is undertaken in medical practice. False positives may
expose people to unnecessary risks, anxiety, costs, and inconve-
nience (37). The traditional medical approach to minimizing false
positives is to rely on occurrence of symptoms to increase pretest
probabilities, although this is poorly understood by most physicians
(38). Targeting age-related chronic diseases associated with pre-
mature mortality as we have offers the potential to mitigate some
negative aspects of screening through (i) the high prevalence and
life-threatening nature of these conditions, (ii) use of low to no
risk technologies, and (iii) convergent approaches to strengthen
interpretation, particularly for WGS variant data.

Table 2. Clinical correlates with rare monogenic variants by disease group and screening test

Disease group

Screening test

Rare monogenic
variants

Global metabolomics
and Quantose IR MRI ECHO ECG

Cardiac rhythm
monitoring

Clinical
laboratories

Medical and
family history

Neoplasms 14 3 2 0 0 0 0 12
Cardiovascular diseases 15 0 0 8 5 5 4 14
Diabetes, urogenital, blood, and

endocrine diseases
7 7 1 0 0 0 3 3

Cirrhosis and other chronic liver diseases 1 1 1 1 1 1 0 1
Neurological disorders 1 0 0 0 0 0 0 1
Other (metabolic) 12 12 1 0 0 0 1 0

Fig. 2. Frequency of five diseases or conditions identified by applying case
definitions among our study participants by age group. The five diseases or
conditions are type 2 diabetes mellitus (diabetes) and diabetes risk, ath-
erosclerosis or atherosclerosis risk, metabolic syndrome, NAFLD, and NASH.
Cohort denominators in Results show estimation of prevalence in the
study cohort.
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We recommended follow-up imaging studies for slightly more
than one-third of our study participants. Some of this is the nature
of screening, which drives the need for more definitive imaging
studies better suited to specific abnormalities. Other instances of
referral were intended to identify change over a specified time
period, which might be suggestive of cancer, such as finding a cystic
pancreatic lesion (39), or instability of a vascular lesion, such an
intracranial aneurysm (40). In some instances, data are lacking to
confidently predict the natural course of these findings, and thus,
the findings may cause unnecessary anxiety and unneeded surgery
(39, 40). Additional research with longer follow-up periods will be
required to resolve outcomes associated with follow-up imaging.
However, the life-threatening consequences and relatively high
prevalence of diseases associated with these lesions suggest that
early recognition is likely to be beneficial for most individuals.
Genomics has been disappointing in its ability to unravel the

estimated heritability of most age-related chronic diseases and
other common diseases (41–43). First, we expect and are in-
creasingly seeing evidence of the recognition of rare variants with
large effect sizes (3, 9, 44). Combining these findings with ad-
vancements in the regulatory genome (45); study of genomic
essentiality (46); monogenic and polygenic methodologies to
assess causation, including Mendelian randomization methods
(47); extension of GWAS to create hazard models (48); and con-
tinued exploration of pleiotropy (49) will increase clinical utility.
Second, increasingly detailed mapping of molecular pathways and
mechanisms associated with diseases and risk factors will provide a
much-needed improved capability to link genotype and phenotype
data (12, 43, 50). In our study, we could show the use of global
metabolomics in mapping to genomic variation. This integration
will strengthen with additional automation of analysis. Third, we
are working to quantitatively integrate genomics with advanced
imaging data and other clinical data to create point-of-care clinical
decision support (48, 51, 52). The version of HLI Open Search that
we are using internally can query individual genomes (and families)
to facilitate rapid exploration of genotype–phenotype associations.

The traditional symptom-driven medical model is clearly in-
adequate for early recognition of age-related chronic diseases
associated with premature mortality, many of which are prevent-
able. The sequelae of these diseases represent most of the current
total US Medicare expenditure (2, 53). For nationally sanctioned
proactive single-disease adult screening programs, there are robust
long-term evaluations of test performance in the context of clinical
harms and benefits and costs—at the population level—although
it is now increasingly well-recognized that individual risk varies
widely for these conditions (54). Single-disease approaches are
problematic in clinical use, because many individuals have risk for
or are suffering from multiple rather than single diseases, and
clear clinical guidance in these real world situations is lacking.
Symptom-driven medicine and single disease-based approaches to
prevention have advanced health but are likely to become anach-
ronistic with the introduction of genomics and other new science
and technologies (e.g., advanced imaging and metabolomics) to
medicine, particularly when combined with the rapid demographic
and epidemiologic changes underway in the United States and
globally. A major promise of genomics and precision medicine is to
more tightly link curative (to identify pathology) and preventive (to
identify risk) medical disciplines by creating health care plat-
forms to personalize disease risk and longitudinal care. Our data
suggest a route to creating such an approach, initially focusing on
prevention of premature deaths among active adults associated
with age-related chronic diseases and then expanding to other
causes of disability and additional life stages.

Materials and Methods
We enrolled active adults ≥18 y old (without acute illness, activity-limiting
unexplained illness or symptoms, or known active cancer) able to come for
6–8 h of onsite data collection who were able to undergo MRI without se-
dation; in the case of women, were not pregnant or attempting to become
pregnant; and were interested in undergoing a precision medicine screening
approach for disease risk detection, including genomics and other testing, as
part of an institutional review board (IRB)-approved clinical research pro-
tocol. Study results were returned to study participants (within 10–12 wk
after visit), who were encouraged to involve their primary care physicians.

Participants underwent a verbal review of the IRB-approved consent
(Western IRB) and were given time to ask and receive answers to questions
during a 0.5- to 1-h session conducted by a health professional. We received
permission from the IRB to collect up to $25,000 for participation in this study.
Study participants underwent standardized activities related to data collec-
tion and return of results in previsit, data acquisition, and data interpretation
during a 1-y study period. Readers interested in access to data, associated
protocols, code, and/or other materials that may not be included in this manu-
script or SI Materials and Methods should contact the corresponding authors.
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